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Boundary-induced transport in particle systems with anomalous diffusion exhibits rectification, negative
resistance, and hysteresis phenomena depending on the way the drive acts on the boundary. The solvable case
of a one-dimensionallD) system characterized by a power-law diffusion coefficient and coupled to two
particle reservoirs at different chemical potential is examined. In particular, it is shown that a microscopic
realization of such a diffusion model is provided by a 3D driven lattice gas with kinetic constraints, in which
energy barriers are absent and the local microscopic reversibility holds.
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[. INTRODUCTION restricted diffusion model is provided by a 3D boundary-
driven lattice gas with reversible kinetic constraints, which is
Macroscopic motion generally results from the action ofcoupled to two particle reservoirs.
nonzero macroscopic forces. Ratchets are systems which are
able to develop a directed motion in the absence of macro- Il. THE DIFFUSION MODEL
scopic forces. Since the early days of kinetic theory, devices ) ) ) o
of this sort have been used as a means to probe the statistical COnsider a transport process in a slab of sizevhich is
nature of the second lafd]. A celebrated example is the described by the one-dimensional diffusion equation:
Smoluchowski-Feynman ratchet and pawl machidg|. In
the last decade, the interest in ratchet systems has been a_P:i
mainly motivated by motor proteins and new separation ot oz
techniqued4]. According to the Curie principle, a directed
transport may arise even in the absence of a macroscopWhere p(z,t) is the local particle density, and/<L. The
bias provided that both parity and time-reversal symmetndiffusion coefficientD ,(p) vanishes at a critical threshold
are broken. Closely related is the nonmonotonic behavior oflensity,p., as a power law with an exponest=0:
the particle current in response to a driving force, known as
negative incremental resistan¢®R). Nonlinear transport D 4(p)=Do(1+¢)(pc—p)?. 2
properties are a crucial ingredient in the complex behavior of
many biological and artificial systems. Typical NR rectifying The system boundaries, locatedzat =L, are in diffusive
devices are the tunnel diode and the sodium channel. Thef@ntact with two-particle reservoirs at chemical potential
is interest in understanding the microscopic origin of such a+=, Which keep the boundary densities at
behavior(which in a tunnel diode is quantum mechanjcal
and to provide classi¢stochastic or deterministianalogs p(xL)=p., V t=0. ()
[5,6]. Cecchi and Magnasco have suggested a purely geo- o ) ) o
metric mechanism in which the time scales involved in theWVhenp..=p_<p., the characteristic relaxation time is fi-
particle motion do not follow the Arrhenius-Kramers law but Nite and the §ystem attains an equilibrium state characterized
rather depend on the existence of purely “entropic” barriersdy @ flat profile. Wherp..=p., the system approaches the
[6]. critical _densty by a power law and the breakl_ng of time-
In this article we show that similar nonlinear transport translation invariance ensugg]. The model was indeed in-
phenomena may occur in a kinetic lattice-gas model in whicroduced in Ref[9] with the purpose of understanding aging
there are no energetic barriers and no local breaking of th#) @ kinetically constrained lattice-gdg,8]. Here we con-
detailed balancéime-reversal symmetjyWe first consider ~Sider the nonequilibrium stationary properties of a system
transport properties in a one-dimensiondD) solvable ~With p.#p_ andp,, p_<pc. In this case the relaxation
ishing diffusion coefficient. The anomalous diffusion coeffi- Profile, p(z), is easily computed:
cient induces a nonlinear relation between the particle cur-
rent and boundary densities, which in turn is responsible for pc—p(2)=(La, —za )9, (4)
rectification and negative resistance. For the particular case ]
we consider here these features can be analytically investivhere the constants. are determined by the boundary con-
gated. We then show that a microscopic realization of such ition (3),
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The particle current is then obtained &s D(p)d,p, which 03
gives 02
Do 01 f
Ip-p-) =5 Llpe=p) "= (pe=p) "7 (6) .
ﬁm 0
The expression of the current has two interesting features: it 01y
is nonlinear and does not depend only on the single variable 02 |
Ap=p,—p_. Inthe limit p.<p. the density profile is lin-
ear, and the Fick’s law~ Ap is recovered in agreement with 08 oq ” 10 100
the linear-response theory. At high enough density, however,
this is not the case and more interesting transport phenomena o
emerge. In the following we explore the implication of Eq. 2
(6) in the nonlinear regime for some relevant cases.
1t
A. Rectification
To begin with we consider, as [10], a boundary poten- e "
tial Ap(t)=p,(t)—p_(t) which is a periodic asymmetric
step function of time with zero average over the period At
1-79l7, te[0,7q];
= -2 n L "
Ap(t) [ —1ol7, te[7g,7]. (@) 0.01 0.1 1 10 100

. . o
The average current over the period is

FIG. 1. Rectification. Average curredt, plotted against the
17 asymmetry parameter= 7/ 7o— 1 for a boundary periodic potential
Jav:; fo\](PJr(t)aP—(t))dt- (8)  with zero average over the perig@, 7] (in both figures we set
=1). (@ p_(t)=0 forte[0,7], andp, (t)=0 forte[ 7, 7]. (b)
. The curves withl >0 (J,,<0) correspond to a fixed, (p_). In
In Fig. 1 we show a plot qﬂaV VS,’ the asymmetry parameter both cases therg is a \7alue of for which an optimal pumping
a=1l19—1, for the case in whiclp_(t)=0 for te[0,7o], condition exists.

andp (t)=0 forte[ 7y, 7]. Fora=1 the potential is sym-
metric,Ap(7o+1)=—Ap(t), and no net average current can gq () at constan. This is done by the method of Lagrange

flow through the system; the rectification effect, i.e., a NoN-myltipliers, which gives the maximum of the current
zero average net current, occurs for amy 1. As in other
ratchet systems, there is a certain valueaofor which an pg‘er) (1-98)17¢
optimal pumping condition exists. The current direction is Jmax:1+¢ (1= T oo 9
determined only byy; for «>1 the current is negative such
that J,(a)=—J,(1/a). However, if the density of one at
boundary, sayp_(p.), is kept fixed to a nonzero value,
there is no current inversiody, is always negativépositive max _ Sl max )

. Py 1-6 p_ 1-6
regardless of the value of the asymmetrysee Fig. b). In = CETrs =5 T o (10)
this case, the net current is nonzero even for a symmetric pc  1-96 Pec 1-4
potential Ap(t), provided only the diffusion is not normal, . o )
$+0. This is not in contradiction with the Curie principle, as Increasing the driving force above this value leads to a de-
parity is explicitly broken; p(—L,t)#p(L,t), while the creasing particle cyrrent. The nonmonqtonlc behawpr of the
boundary dissipation breaks the time-reversal symmetrycurrent is shown in Fig. 2 as a function of the dridg
More generally, one may also consider a symmetric potentiaf-P+ —p- for different é. In the limit of small density gradi-
that changes adiabatically according to suitable paths in thht Fick's law is correctly recoverefthe dotted line in Fig.
space of variablesp(, ,p_), and finds similar rectification 2)- The higher the5the smaller the range in which the linear
properties. relation holds. The negative resistance found here is a con-

sequence of the fact that the current depends in a nonlinear
way on both reservoir densities, which in our model follows
specifically from a power-law vanishing diffusion coeffi-
To further explore the nonlinear transport regime wecient. This last feature is commonly observed, e.g., in col-
looked for situations in which an increasing driving force loids and hard-sphere systems near their random close-
leads to a decreasing particle current. To keep things simpl@acking limit. In the next section we shall see how, at
we consider the case in which the ratio of the boundary denmicroscopic level, negative resistance and rectification may
sities,6=p_/p. , is fixed, and study the stationary point of occur in the absence of any energetic barriers to the particle

B. Negative resistance and hysteresis
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FIG. 2. Negative resistance. The particle curréfs. ,p_) is FIG. 4. Density profile in a boundary-driven lattice gas coupled
plotted versus the potential, —p_ for different values of the ratio g two-particle reservoir at density, =p(L)=0.85 andp_=p
6=p_Ip.=04, 05, 0.6, 0.7, and 0.8rom top to bottom. The  (_| )=0.75 (square§ with L=160 and transverse surface?20
dotted line represents Fick’s law, which is recovered in the limit of The continuous smooth line represents the analytic profile predicted
small density gradient. by the diffusion equation, Eq4). Also shown, for comparison, is

the linear profile corresponding to a normal diffusion coefficient
motion, through a purely “entropic” mechanism as has beendashed ling and the numerical simulation data obtained by remov-
suggested in Ref6]. These phenomena are intimately asso-ing the kinetic constraintéstars.
ciated with the possibility of having a hysteretic response. |

f
: : : librium stationary state by a chemical-potential difference.
we consider a loop in the plang (,p_) it can be shown ) X . :

; o The bulk dynamic of the modébefined on a cubic lattige
that_ the particle current resp_onds to the _drlvmg_ force by foI-Consists inymoving a particle t% a neighboring empty soite it
Iowm_g a clockv_ws_e hyster_e5|s cycleee Fig. % Fm_ally, W' the particle has less than four nearest-neighboring particles
mention that similar nonlmegr transport pr_opert|es_a_lso 4Ppefore and after it has moved, consistent with detailed bal-
pear in the presence of a divergent diffusion coefficieht, oce(7) The boundary dynamic mimics the contact of the
<0. The related diffusion equation was studied by Carlsonyygiem with a particle reservoir at chemical potenial. It
and co-workers in an attempt to provide a continuum dejg simulated according to the usual Monte Carlo rule: if a

scription of self-organizing critical systenp$1]. randomly chosen site on the layer is empty, a new patrticle is
added; otherwise, if the site is occupied, the particle is re-
C. The driven lattice gas moved with probabilitye™ #+ (. =0, we setkgT=1). The

. ) o global effect of the reservoirs is to fix the boundary densities
~We now show that a microscopic realization of the abovey twpo different valueg , andp_, driving a current through
diffusion moo_lel does_lndeed exist. It is prqwdec_i by a klneh-_the system. The aging dynamics of the system when the two
cally constrained lattice-gas, boundary driven in a nonequireservoirs are at the same chemical potential was first inves-
tigated in[8,9]. As the density gets closer to the threshold
1 - - - : valuep.=0.88, the diffusion coefficient approaches zero as a
power law, Eq.(2), with ¢=3.1[7]. For our purposes it is
0.8 | 1 sufficient to show that close to the threshgigdand in the
presence of two reservoirs, the system approaches a steady
06 T state characterized by a density profile which is exactly de-
scribed by the Eq(4). In Fig. 4 the density profile obtained
in a Monte Carlo simulation is compared with the one pre-
dicted by the anomalous diffusion equation using the above
values ofp. and ¢. There is excellent agreement between the
two. The small discrepancy observable near the higher den-
0 02 o4 o6 o8 y sity edge is a finite-size effect which tends to disappear as
the thermodynamic limit. —o is approached. In Fig. 4 for
P+~ P. comparison we show the numerical density profiles of both
the usual boundary driven 3D lattice gabtained by remov-
ing the kinetic constrainjsand that predicted by the normal
diffusion equation. These results suggest that the nonlinear
nature of the density profile, and consequently the nonlinear
transport, is essentially determined by the presence of
blocked configurations induced by the kinetic constraints.

J(p., p)

04

0.2

FIG. 3. Hysteresis. Response of the curr&td a cyclic change
of the potentialAp=p,—p_. The loop in the planegd, ,p_) is
carried out in three steps: starting frggm =p_=p, the value of
p. is increased up tp, keeping constanp_=p, (Upper curve
thenp_ is increased fronp, to p, while p, is fixed top, (lower
curve; finally p, andp _ are decreased o, keepingp . =p_ . We
setp,=0 andp,=1. The continuous line corresponds to the case
p.=1 and¢=3.1 (anomalous diffusion while the dashed straight
line—absence of hysteresis—corresponds to normal diffusipn ( In this article we have shown that an analytically solvable
=0). model of boundary-induced transport exhibits rectification,

IIl. SUMMARY AND CONCLUSION
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hysteresis, and negative resistance phenomena. We have atsmpic diffusion model and the microscopic lattice gas sheds
shown that such features may occur in driven lattice-gasome light on the nonlinear nature of transport properties. On
models where local detailed balance holds and dissipation isne hand, they are due to the nonlinear dependence of the
only forced on the boundary. In particular, we have presentedensity profile on both boundary densities, not simply on

numerical results supporting the hypothesis that the diffusiontheir difference. On the other hand, the nonlinear density
model represents the hydrodynamic limit of a driven latticeprofile in the driven lattice gas follows from the presence of

gas with kinetic constraints. The efficiency of the system inblocked configurations. This suggests that the steady-state
the presence of an external load and the interplay of théransport properties, like some features of aging systems, are
boundary-driving force with a spatially varying potential, essentially determined by an extensive entropy of blocked
may also be of interest. Since there are no energetic barrieconfigurations. It is tempting to speculate that even in such
to the motion of particles this model provides another ex-cases the invariant dynamic measure could be defined in
ample of a ratchet system based on the mechanism of eterms of a suitable generalization of the Edwards hypothesis
tropic trapping[6]. The relationship between the macro- [12].
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