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Driven lattice gas as a ratchet and pawl machine
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Boundary-induced transport in particle systems with anomalous diffusion exhibits rectification, negative
resistance, and hysteresis phenomena depending on the way the drive acts on the boundary. The solvable case
of a one-dimensional~1D! system characterized by a power-law diffusion coefficient and coupled to two
particle reservoirs at different chemical potential is examined. In particular, it is shown that a microscopic
realization of such a diffusion model is provided by a 3D driven lattice gas with kinetic constraints, in which
energy barriers are absent and the local microscopic reversibility holds.
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I. INTRODUCTION

Macroscopic motion generally results from the action
nonzero macroscopic forces. Ratchets are systems whic
able to develop a directed motion in the absence of ma
scopic forces. Since the early days of kinetic theory, devi
of this sort have been used as a means to probe the stati
nature of the second law@1#. A celebrated example is th
Smoluchowski-Feynman ratchet and pawl machine@2,3#. In
the last decade, the interest in ratchet systems has
mainly motivated by motor proteins and new separat
techniques@4#. According to the Curie principle, a directe
transport may arise even in the absence of a macrosc
bias provided that both parity and time-reversal symme
are broken. Closely related is the nonmonotonic behavio
the particle current in response to a driving force, known
negative incremental resistance~NR!. Nonlinear transport
properties are a crucial ingredient in the complex behavio
many biological and artificial systems. Typical NR rectifyin
devices are the tunnel diode and the sodium channel. T
is interest in understanding the microscopic origin of suc
behavior~which in a tunnel diode is quantum mechanic!
and to provide classic~stochastic or deterministic! analogs
@5,6#. Cecchi and Magnasco have suggested a purely g
metric mechanism in which the time scales involved in
particle motion do not follow the Arrhenius-Kramers law b
rather depend on the existence of purely ‘‘entropic’’ barrie
@6#.

In this article we show that similar nonlinear transpo
phenomena may occur in a kinetic lattice-gas model in wh
there are no energetic barriers and no local breaking of
detailed balance~time-reversal symmetry!. We first consider
transport properties in a one-dimensional~1D! solvable
model of a boundary-driven system with a power-law va
ishing diffusion coefficient. The anomalous diffusion coef
cient induces a nonlinear relation between the particle c
rent and boundary densities, which in turn is responsible
rectification and negative resistance. For the particular c
we consider here these features can be analytically inv
gated. We then show that a microscopic realization of suc
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restricted diffusion model is provided by a 3D boundar
driven lattice gas with reversible kinetic constraints, which
coupled to two particle reservoirs.

II. THE DIFFUSION MODEL

Consider a transport process in a slab of size 2L which is
described by the one-dimensional diffusion equation:

]r

]t
5

]

]z FDf~r!
]r

]zG , ~1!

wherer(z,t) is the local particle density, anduzu<L. The
diffusion coefficientDf(r) vanishes at a critical threshol
density,rc , as a power law with an exponentf>0:

Df~r!5D0~11f!~rc2r!f. ~2!

The system boundaries, located atz56L, are in diffusive
contact with two-particle reservoirs at chemical potent
m6 , which keep the boundary densities at

r~6L,t !5r6 , ; t>0. ~3!

When r15r2,rc , the characteristic relaxation time is fi
nite and the system attains an equilibrium state character
by a flat profile. Whenr65rc , the system approaches th
critical density by a power law and the breaking of tim
translation invariance ensues@9#. The model was indeed in
troduced in Ref.@9# with the purpose of understanding agin
in a kinetically constrained lattice-gas@7,8#. Here we con-
sider the nonequilibrium stationary properties of a syst
with r1Þr2 and r1 , r2,rc . In this case the relaxation
time is still finite for any finiteL, and the steady-state densi
profile, r(z), is easily computed:

rc2r~z!5~La12za2!1/~11f!, ~4!

where the constantsa6 are determined by the boundary co
dition ~3!,

a65
1

2L
@~rc2r2! l 1f6~rc2r1!11f#. ~5!
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The particle current is then obtained asJ5D(r)]zr, which
gives

J~r2 ,r2!5
D0

2L
@~rc2r2!11f2~rc2r1!11f#. ~6!

The expression of the current has two interesting feature
is nonlinear and does not depend only on the single varia
Dr5r12r2 . In the limit r6!rc the density profile is lin-
ear, and the Fick’s lawJ;Dr is recovered in agreement wit
the linear-response theory. At high enough density, howe
this is not the case and more interesting transport phenom
emerge. In the following we explore the implication of E
~6! in the nonlinear regime for some relevant cases.

A. Rectification

To begin with we consider, as in@10#, a boundary poten-
tial Dr(t)5r1(t)2r2(t) which is a periodic asymmetric
step function of time with zero average over the periodt :

Dr~ t !5H 12t0 /t, tP@0,t0#;

2t0 /t, tP@t0 ,t#.
~7!

The average current over the period is

Jav5
1

t E0

t

J„r1~ t !,r2~ t !…dt. ~8!

In Fig. 1 we show a plot ofJav vs the asymmetry paramete
a5t/t021, for the case in whichr2(t)50 for tP@0,t0#,
andr1(t)50 for tP@t0 ,t#. For a51 the potential is sym-
metric,Dr(t01t)52Dr(t), and no net average current ca
flow through the system; the rectification effect, i.e., a no
zero average net current, occurs for anyaÞ1. As in other
ratchet systems, there is a certain value ofa for which an
optimal pumping condition exists. The current direction
determined only bya; for a.1 the current is negative suc
that Jav(a)52Jav(1/a). However, if the density of one
boundary, sayr2(r1), is kept fixed to a nonzero value
there is no current inversion;Jav is always negative~positive!
regardless of the value of the asymmetry,a, see Fig. 1~b!. In
this case, the net current is nonzero even for a symme
potentialDr(t), provided only the diffusion is not norma
fÞ0. This is not in contradiction with the Curie principle, a
parity is explicitly broken; r(2L,t)Þr(L,t), while the
boundary dissipation breaks the time-reversal symme
More generally, one may also consider a symmetric poten
that changes adiabatically according to suitable paths in
space of variables (r1 ,r2), and finds similar rectification
properties.

B. Negative resistance and hysteresis

To further explore the nonlinear transport regime
looked for situations in which an increasing driving for
leads to a decreasing particle current. To keep things sim
we consider the case in which the ratio of the boundary d
sities,d5r2 /r1 , is fixed, and study the stationary point
02010
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Eq. ~6! at constantd. This is done by the method of Lagrang
multipliers, which gives the maximum of the current

Jmax5
rc

11f

11f

~12d!11f

~12d1/~11f!!f ~9!

at

r1
max

rc
5

12d1/f

12d~11f!/f ,
r2

max

rc
5d

12d1/f

12d~11f!/f . ~10!

Increasing the driving force above this value leads to a
creasing particle current. The nonmonotonic behavior of
current is shown in Fig. 2 as a function of the driveDr
5r12r2 for different d. In the limit of small density gradi-
ent Fick’s law is correctly recovered~the dotted line in Fig.
2!. The higher thed the smaller the range in which the linea
relation holds. The negative resistance found here is a c
sequence of the fact that the current depends in a nonli
way on both reservoir densities, which in our model follow
specifically from a power-law vanishing diffusion coeffi
cient. This last feature is commonly observed, e.g., in c
loids and hard-sphere systems near their random cl
packing limit. In the next section we shall see how,
microscopic level, negative resistance and rectification m
occur in the absence of any energetic barriers to the par

FIG. 1. Rectification. Average currentJav plotted against the
asymmetry parametera5t/t021 for a boundary periodic potentia
with zero average over the period@0, t# ~in both figures we sett
51!. ~a! r2(t)50 for tP@0,t0#, andr1(t)50 for tP@t0 ,t#. ~b!
The curves withJav.0 (Jav,0) correspond to a fixedr1 (r2). In
both cases there is a value ofa for which an optimal pumping
condition exists.
1-2
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motion, through a purely ‘‘entropic’’ mechanism as has be
suggested in Ref.@6#. These phenomena are intimately ass
ciated with the possibility of having a hysteretic response
we consider a loop in the plane (r1 ,r2) it can be shown
that the particle current responds to the driving force by f
lowing a clockwise hysteresis cycle~see Fig. 3!. Finally, we
mention that similar nonlinear transport properties also
pear in the presence of a divergent diffusion coefficientf
,0. The related diffusion equation was studied by Carls
and co-workers in an attempt to provide a continuum
scription of self-organizing critical systems@11#.

C. The driven lattice gas

We now show that a microscopic realization of the abo
diffusion model does indeed exist. It is provided by a kine
cally constrained lattice-gas, boundary driven in a noneq

FIG. 2. Negative resistance. The particle currentJ(r1 ,r2) is
plotted versus the potentialr12r2 for different values of the ratio
d5r2 /r150.4, 0.5, 0.6, 0.7, and 0.8~from top to bottom!. The
dotted line represents Fick’s law, which is recovered in the limit
small density gradient.

FIG. 3. Hysteresis. Response of the currentJ to a cyclic change
of the potentialDr5r12r2 . The loop in the plane (r1 ,r2) is
carried out in three steps: starting fromr15r25ra the value of
r1 is increased up torb keeping constantr25ra ~upper curve!;
thenr2 is increased fromra to rb while r1 is fixed torb ~lower
curve!; finally r1 andr2 are decreased tora keepingr15r2 . We
set ra50 andrb51. The continuous line corresponds to the ca
rc51 andf53.1 ~anomalous diffusion!, while the dashed straigh
line—absence of hysteresis—corresponds to normal diffusionf
50).
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librium stationary state by a chemical-potential differenc
The bulk dynamic of the model~defined on a cubic lattice!
consists in moving a particle to a neighboring empty site
the particle has less than four nearest-neighboring parti
before and after it has moved, consistent with detailed b
ance@7#. The boundary dynamic mimics the contact of t
system with a particle reservoir at chemical potentialm6 . It
is simulated according to the usual Monte Carlo rule: if
randomly chosen site on the layer is empty, a new particl
added; otherwise, if the site is occupied, the particle is
moved with probabilitye2m6 ~m6>0, we setkBT51!. The
global effect of the reservoirs is to fix the boundary densit
at two different valuesr1 andr2 , driving a current through
the system. The aging dynamics of the system when the
reservoirs are at the same chemical potential was first in
tigated in @8,9#. As the density gets closer to the thresho
valuerc.0.88, the diffusion coefficient approaches zero a
power law, Eq.~2!, with f53.1 @7#. For our purposes it is
sufficient to show that close to the thresholdrc and in the
presence of two reservoirs, the system approaches a st
state characterized by a density profile which is exactly
scribed by the Eq.~4!. In Fig. 4 the density profile obtaine
in a Monte Carlo simulation is compared with the one p
dicted by the anomalous diffusion equation using the ab
values ofrc andf. There is excellent agreement between t
two. The small discrepancy observable near the higher d
sity edge is a finite-size effect which tends to disappear
the thermodynamic limitL→` is approached. In Fig. 4 fo
comparison we show the numerical density profiles of b
the usual boundary driven 3D lattice gas~obtained by remov-
ing the kinetic constraints! and that predicted by the norma
diffusion equation. These results suggest that the nonlin
nature of the density profile, and consequently the nonlin
transport, is essentially determined by the presence
blocked configurations induced by the kinetic constraints

III. SUMMARY AND CONCLUSION

In this article we have shown that an analytically solvab
model of boundary-induced transport exhibits rectificatio

f

e

FIG. 4. Density profile in a boundary-driven lattice gas coup
to two-particle reservoir at densityr15r(L)50.85 andr25r
(2L)50.75 ~squares!, with L5160 and transverse surface 202.
The continuous smooth line represents the analytic profile predi
by the diffusion equation, Eq.~4!. Also shown, for comparison, is
the linear profile corresponding to a normal diffusion coefficie
~dashed line!, and the numerical simulation data obtained by remo
ing the kinetic constraints~stars!.
1-3



ga
n
te
io

ice
i
th
l,
rie
ex

e
o-

eds
On

f the
on
sity
of
tate

, are
ked
ch

d in
esis

RAPID COMMUNICATIONS

MAURO SELLITTO PHYSICAL REVIEW E65 020101~R!
hysteresis, and negative resistance phenomena. We have
shown that such features may occur in driven lattice-
models where local detailed balance holds and dissipatio
only forced on the boundary. In particular, we have presen
numerical results supporting the hypothesis that the diffus
model represents the hydrodynamic limit of a driven latt
gas with kinetic constraints. The efficiency of the system
the presence of an external load and the interplay of
boundary-driving force with a spatially varying potentia
may also be of interest. Since there are no energetic bar
to the motion of particles this model provides another
ample of a ratchet system based on the mechanism of
tropic trapping @6#. The relationship between the macr
.
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scopic diffusion model and the microscopic lattice gas sh
some light on the nonlinear nature of transport properties.
one hand, they are due to the nonlinear dependence o
density profile on both boundary densities, not simply
their difference. On the other hand, the nonlinear den
profile in the driven lattice gas follows from the presence
blocked configurations. This suggests that the steady-s
transport properties, like some features of aging systems
essentially determined by an extensive entropy of bloc
configurations. It is tempting to speculate that even in su
cases the invariant dynamic measure could be define
terms of a suitable generalization of the Edwards hypoth
@12#.
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